
DISCUSSION 11
Scheme, Scheme Lists

Mingxiao Wei
mingxiaowei@berkeley.edu Apr 13, 2023

mailto:mingxiaowei@berkeley.edu

LOGISTICS 🏡

Welcome to the world of (scheme)(scheme) 🎃
Homework 08 due today 4/13
The Scheme project is coming up! 👀

Now is a good time to reach out to a project partner, if
you'd like to collaborate!
If you like interpreter, go take CS 164 :o

Reminder about Homework 7 recovery

https://edstem.org/us/courses/34756/discussion/2928156

FROM LAST TIME... 👀

SCHEME 🦦

SCHEME - PRIMITIVE EXPRESSIONS

Booleans

#t in Scheme True in Python↔

#f in Scheme False in Python↔

#f#f is THE ONLY FALSY VALUE in Scheme! is THE ONLY FALSY VALUE in Scheme!
0 is truthy
undefined (Scheme's version of None) is also truthy

scm> #t

scm> #f
#t

#f

SCHEME - CALL EXPRESSIONS

Anatomy: (func op1 op2 ...)

Operator is WITHIN the parenthesis, and comes first
Operator/operands are separated by whitespace, NOT comma
Same evaluation rule as in Python:

1. Evaluate the operator, which should evaluate to a procedure*
2. Evaluate the operands from left to right
3. Apply the procedure to the operands

* In Scheme, functions are called procedures

SCHEME - BUILT-IN PROCEDURES

Scheme Python
(/ a b) a / b

(quotient a b) a // b

(modulo a b) a % b

(= a b) a == b

(not (= a b)) a != b

SCHEME - QUOTES

use a one single quotation mark - '<expression>
only applies to the expression right after

Equivalent form: (quote <expression>)
Evaluate to the <expression> exactly as it is

scm> 'hello-world ; evaluates to a symbol value

scm> (quote hello-world) ; same as above

scm> '(+ 1 2)

hello-world

hello-world

(+ 1 2)

SCHEME - SPECIAL FORMS

Do not follow the rules for call expressions (e.g., short-circuiting)
 - complete list of special forms

Includes and , or , if , cond , etc.
Scheme Specification

scm> (and 0 1 2 3) ; 0 in Scheme is truthy!

scm> (or 0 1 2 3)

scm> (and (> 1 6) (/ 1 0)) ; short-circuiting applies

scm> (or (< 1 6) (/ 1 0))

3

0

#f

#t

https://cs61a.org/articles/scheme-spec/

SCHEME - CONTROL STRUCTURES

(if <predicate> <if-true> [if-false]) *

* In our , <> is used to denote required components
while [] is used to denote optional components

Evaluation rules
1. Evaluate <predicate>
2. If it evaluates to a truthy value, evaluate and return

<if-true> . Otherwise, evaluate and return [if-false]
3. [if-false] is optional. If not provided and <predicate> is

falsy, returns undefined - Scheme's version of None (not
displayed in the interpreter unless printed)

Only one of <if-true> and [if-false] is evaluated
The entire special form evaluates to either <if-true> or
[if-false]

No elif - if more than 2 branches, use nested if 's or cond

Scheme Specification

https://cs61a.org/articles/scheme-spec/

SCHEME - CONTROL STRUCTURES

Scheme Python

Note: Indentation / line break does NOT matter in Scheme

(if (> x 3)
 1
 2)

if x > 3:
 return 1
else:
 return 2

(if (< x 0)
 'negative
 (if (= x 0)
 'zero
 'positive
)
)

if x < 0:
 return 'negative'
else:
 if x == 0:
 return 'zero'
 else:
 return 'positive'

SCHEME - CONTROL STRUCTURES

(cond
 (<p1> <e1>)
 ...
 (<pn> <en>)
 [(else <else-expression>)]) ; else is optional

Similar to a multi-clause if/elif/else conditional
Takes in an arbitrary number of arguments - clauses

Clause: (<p> <e>)
Evaluation rules:

1. Evaluate the predicates <p1> , <p2> , ..., <pn> in order until a
truth-y value

2. For the first truthy predicate, evaluate and return the
corresponding expression in the clause

3. If none are truth-y and there is an else clause, evaluate and
return <else-expression> ; otherwise return undefined

SCHEME - CONTROL STRUCTURES

Scheme Python

Note: Indentation / line break does NOT matter in Scheme

(cond
 ((< x 3) 1)
 (else 2)
)

if x < 3:
 return 1
else:
 return 2

(cond
 ((> x 0) 'positive)
 ((< x 0) 'negative)
 (else 'zero)
)

if x > 0:
 return 'positive'
elif x < 0:
 return 'negative'
else:
 return 'zero'

SCHEME - DEFINE VARIABLES

(define <name> <expression>)

Evaluation rules
1. Evaluate the <expression>
2. Bind its value to the <name> in the current frame
3. Return <name> as a symbol

Evaluates to Evaluates to <name><name> (a symbol value) (a symbol value)

scm> (define x (+ 6 1))

scm> x

scm> (+ x 2)

x

7

9

SCHEME - DEFINE FUNCTIONS

(define (<func-name> <param1> <param2> ...) <body>)

Evaluation rules
1. Create a lambda procedure with the given parameters and

<body>

2. Bind its procedure to the <func-name> in the current frame
3. Return <func-name> as a symbol

Evaluates to Evaluates to <name><name> (a symbol value) (a symbol value)
<body> can have multiple expressions

all expressions are evaluated from left to right, and the value of
the last expression is returned

Special form - function body not evaluated until the function is called

SCHEME - DEFINE FUNCTIONS

(define (<func-name> <param1> <param2> ...) <body>)

scm> (define (foo x y) (+ x y))

scm> (foo 2 3)

scm> (define (bar x y) (define z (* x y)) (+ x y z))

scm> (bar 2 3)

foo

5

bar

11

SCHEME - LAMBDA FUNCTIONS

(lambda (<param1> <param2> ...) <body>)

Create and evaluate to a procedure evaluate to a procedure , without altering the current
environment unless we bind it to a variable.
All Scheme procedures are lambda procedures!
<body> can have multiple expressions

all expressions are evaluated from left to right, and the value of
the last expression is returned

scm> (define foo (lambda (x y) (+ x y)))

scm> (define (foo x y) (+ x y)) ; these two are equivalent

scm> (foo 2 3)

scm> (lambda (x y) (+ x y))

foo

foo

5

(lambda (x y) (+ x y))

SCHEME - LET EXPRESSIONS

(let ([binding_1] ... [binding_n]) <body> ...)

Each [binding] has the form (<name> <expr>)
Evaluation rule

1. create a new child frame whose parent is the current frame
2. For each binding , bind each name to its corresponding

evaluated expr
3. In this new frame, the body expressions are evaluated in

order, returning the result of evaluating the last expression

SCHEME - LET EXPRESSIONS

(let ([binding_1] ... [binding_n]) <body> ...)

scm> (define x 6)

scm> (define z 7)

scm> (let (
 (x 5) (y 10)
)
 (print x)
 (print z)
 (- x y)
 (+ x y)
)

x

z

5
7
15

SCHEME - BEGIN EXPRESSIONS

(begin <expr_1> ... <expr_n>)

Evaluate all expressions in order in the current frame
Return the value of the last expression

scm> (define x 6)

scm> (define y 7)

scm> (begin
 (print 'hello) ; evaluate to undefined
 (define z 8) ; evaluate to the symbol z
 (- x y z) ; evaluate to 6 - 7 - 8 = -9
 (+ x y z) ; evaluate to 6 + 7 + 8 = 21
)

x

y

hello
21

SCHEME - BEGIN EXPRESSIONS

(begin <expr_1> ... <expr_n>)

Useful when only one expression is expected

scm> (if (begin (print 0) 0)
 (begin (print 1) (+ 2 3))
 (begin (print 4) (+ 5 6))
)
0
1
5

WORKSHEET
WWSD, Q1

SCHEME LISTS 🦥

SCHEME LISTS - INTRO

All Scheme Lists are linked lists! 😮😮
3 ways to construct a linked list:

scm> (cons 1 (cons 2 (cons 3 nil))) ; nil -> Link.empty

scm> (list 1 2 3)

scm> '(1 2 3)

(1 2 3)

(1 2 3)

(1 2 3)

(car lst) - returns the first element from the lst , analogous
to link.first
(cdr lst) - returns the rest of the lst as another Scheme list,
analogous to link.rest

SCHEME LISTS - INTRO

scm> (define lst (cons 1 (cons 2 (cons 3 nil))))

scm> lst

scm> (car lst)

scm> (cdr lst)

scm> (car (cdr (cdr a)))

lst

(1 2 3)

1

(2 3)

3

SCHEME LISTS - CONSTRUCTOR

(cons <first> <rest>)

Similar to a linked list constructor
<first>

first element of the list
<rest>

must be another Scheme list, or nil if empty
required

Useful for recursion problems

scm> (define a (cons 1 (cons 'a nil)))

scm> a

scm> (cons 6 a)

a

(1 a)

(6 1 a)

SCHEME LISTS - CONSTRUCTOR

(list <ele1> <ele2> ...)

Takes in an arbitrary number of elements in the list
Evaluate each element (could be an expression) from left to right,
and return them as a Scheme list
Useful when we know exactly what elements are in the list

scm> (define a (+ 6 1))

scm> a

scm> (list (- a 1) a (+ a 1))

a

7

(6 7 8)

SCHEME LISTS - CONSTRUCTOR

'(...) or (quote ...)

Construct the exact list given, without any evaluation

scm> (define a (+ 6 1))

scm> (list 6 a 8)

scm> '(6 a 8) ; equivalently, (quote (6 a 8))

scm> '(cons 1 2)

scm> '(1 (2 3 4))

a

(6 7 8)

(6 a 8)

(cons 1 2)

(1 (2 3 4))

SCHEME LISTS - BUILT-IN PROCEDURES

(null? lst) - returns #t if lst is empty
(append lst1 lst2) - concatenates two lists together and
return them as a new list
(length lst) - return the length of lst

scm> (null? nil)

scm> (append '(c s) '(6 1 a))

scm> (length '(1 (2 3) 4))

#t

(c s 6 1 a)

3

CHECKING EQUALITY

(= <a>)

Both <a> and must be numbers
(eq? <a>)

Similar to is in Python
Returns #t if <a> and are equivalent primitive values, or
if they refer to the same list

(equal? <a>)

For pairs (lists) - returns #t if they contain the same elements,
similar to lst1 == lst2 in Python
For primitive values - same as eq?

CHECKING FOR EQUALITY

scm> (= (+ 2 3) (+ 1 4)) ; must be two numbers

scm> (eq? (list 1 2) (list 1 2)) ; two different lists

scm> (equal? (list 1 2) (list 1 2)) ; lists with the same elements

scm> (define a (list 3 4))

scm> (define b a) ; a and b are the same list

scm> (eq? a b)

#t

#f

#t

a

b

#t

PRO TIPS

Parenthesis MATTERS A LOT in Scheme - they are used to denoted
expressions in addition to grouping

For example, we can have ((1) + (2)) in Python, but not
(+ (1) (2)) in Scheme - correct version is (+ 1 2)

NO ITERATION, ONLY RECURSION 🤔
Make sure every call expression is wrapped in a parenthesis
When using cond , make sure each clause is in its own parenthesis
No return - can't terminate a function early. The return value has to
be the value of the last expression

WORKSHEET Q2-5

ATTENDANCE! 🤠

The attendance form and slides are both linked on
our !
Please leave any anonymous feedback here

Please do remember to fill out the form by midnightPlease do remember to fill out the form by midnight
today!!today!!

go.cs61a.org/mingxiao-att

section website

go.cs61a.org/mingxiao-anon

https://go.cs61a.org/mingxiao-att
https://go.cs61a.org/mingxiao-index
https://go.cs61a.org/mingxiao-anon

