DISCUSSION 11

Scheme, Scheme Lists

Mingxiao Wei
mingxiaowei@berkeley.edu Apr 13, 2023

mailto:mingxiaowei@berkeley.edu

LOGISTICS @

e Welcome to the world of (scheme) @
e Homework 08 due today 4/13
e The Scheme project is coming up! 99

= Now is a good time to reach out to a project partner, if
you'd like to collaborate!

= |f you like interpreter, go take CS 164 .0
e Reminder about Homework 7 recovery

https://edstem.org/us/courses/34756/discussion/2928156

FROM LAST TIME... 3

How was the second midterm? Compared to the first one?

SCHEME

SCHEME - PRIMITIVE EXPRESSIONS

e Booleans
= #t in Scheme < True in Python

= #f in Scheme < False in Python
= #f is THE ONLY FALSY VALUE in Scheme!

o 0 is truthy
o undefined (Scheme's version of None) is also truthy

scm> #t

#t
scm> #f

#f

SCHEME - CALL EXPRESSIONS

Anatomy: (func opl op2 ...)

e Operator is WITHIN the parenthesis, and comes first

e Operator/operands are separated by whitespace, NOT comma

e Same evaluation rule as in Python:
1. Evaluate the operator, which should evaluate to a procedure*
2. Evaluate the operands from left to right
3. Apply the procedure to the operands

* In Scheme, functions are called procedures

SCHEME - BUILT-IN PROCEDURES

Scheme Python
(/ a b) a/ b
(quotient a b) a // b
(modulo a b) a s b
(= a b) a ==>b
(not (= a b)) a !=»>b

SCHEME - QUOTES

e use a one single quotation mark - '<expression>
= only applies to the expression right after

e Equivalent form: (quote <expression>)

e Evaluate to the <expression> exactly asitis

scm> 'hello-world

hello-world

scm> (quote hello-world)
hello-world

scm> '(+ 1 2)

(+12)

SCHEME - SPECIAL FORMS

e Do not follow the rules for call expressions (e.g., short-circuiting)
e Scheme Specification - complete list of special forms
e |ncludes and, or, if, cond, etc.

scm> (and 0 1 2 3)

3

scm> (or O 1 2 3)

0

scm> (and (> 1 6) (/ 1 0))
#f

scm> (or (<1 6) (/1 0))
#t

https://cs61a.org/articles/scheme-spec/

SCHEME - CONTROL STRUCTURES

(1f <predicate> <if-true> [if—false])*

e Evaluation rules
1. Evaluate <predicate>

2. If it evaluates to a truthy value, evaluate and return
<if-true>. Otherwise, evaluate and return [if-false]

3. [if-false] Is optional. If not provided and <predicate> iS
falsy, returns undefined - Scheme's version of None (not
displayed in the interpreter unless printed)

e Onlyone of <if-true> and [if-false] IS evaluated

= The entire special form evaluates to either <if-true> or
[Lf-false]

e No elif -if more than 2 branches, use nested if's or cond

* |n our Scheme Specification, <> is used to denote required components
while [] is used to denote optional components

https://cs61a.org/articles/scheme-spec/

SCHEME - CONTROL STRUCTURES

Scheme Python
(if (> x 3) if x > 3z
1 return 1
2) else:
return 2
(if (< x 0) if x < 0:
'negative return 'negative'
(if (= x 0) else:
'zero if x ==
'positive return 'zero'
) else:

return 'positive’

Note: Indentation / line break does NOT matter in Scheme

SCHEME - CONTROL STRUCTURES

(cond
(<p1> <el>)

(<pn> <en>)

[(else <else-expression>)])

e Similar to a multi-clause if/elif/else conditional

e Takes in an arbitrary number of arguments - clauses
m Clause: (<p> <e>)

e Evaluation rules:

1. Evaluate the predicates <pl1>, <p2>, ..., <pn> In order until a
truth-y value

2. For the first truthy predicate, evaluate and return the
corresponding expression in the clause

3. If none are truth-y and there is an else clause, evaluate and
return <else-expression>; otherwise return undefined

SCHEME - CONTROL STRUCTURES

Scheme Python
(cond if x < 3z
((<x3) 1) return 1
(else 2) else:
) return 2
(cond if x > 0:
((> x 0) 'positive) return 'positive'
((< x 0) 'negative) elif x < 0Oz
(else 'zero) return 'negative’
) else:
return 'zero'

Note: Indentation / line break does NOT matter in Scheme

SCHEME - DEFINE VARIABLES

(define <name> <expression>)

e Evaluation rules
1. Evaluate the <expression>
2. Bind its value to the <name> in the current frame

3. Return <name> as a symbol
e Evaluates to <name> (a symbol value)

scm> (define x (+ 6 1))

X
sCcm> X

7/
scm> (+ x 2)

S

SCHEME - DEFINE FUNCTIONS

(define (<func-name> <paraml> <param2> ...) <body>)

e Evaluation rules

1. Create a lambda procedure with the given parameters and
<body>

2. Bind its procedure to the <func-name> in the current frame
3. Return <func-name> as a symbol

e Evaluates to <name> (a symbol value)

e <body> can have multiple expressions

= all expressions are evaluated from left to right, and the value of
the last expression is returned

e Special form - function body not evaluated until the function is called

SCHEME - DEFINE FUNCTIONS

(define (<func-name> <paraml> <param2> ...) <body>)

scm> (define (foo x y) (+ x y))

foo

scm> (foo 2 3)

5

scm> (define (bar x y) (define z (* x y)) (+ xy 2))
bar

scm> (bar 2 3)

11

SCHEME - LAMBDA FUNCTIONS

(lambda (<paraml> <param2> ...) <body>)

e Create and evaluate to a procedure , without altering the current
environment unless we bind it to a variable.

e All Scheme procedures are lambda procedures!
e <body> can have multiple expressions

= all expressions are evaluated from left to right, and the value of
the last expression is returned

scm> (define foo (lambda (x y) (+ x y)))

foo

scm> (define (foo x y) (+ x y))
foo

scm> (foo 2 3)

5

scm> (lambda (x y) (+ x vy))
(lambda (x y) (+ x y))

SCHEME - LET EXPRESSIONS

(let ([binding 1] ... [binding n]) <body> ...)

e Each [binding] has the form (<name> <expr>)
e Evaluation rule
1. create a new child frame whose parent is the current frame

2. For each binding, bind each name to its corresponding
evaluated expr

3. In this new frame, the body expressions are evaluated in
order, returning the result of evaluating the last expression

SCHEME - LET EXPRESSIONS

(let ([binding 1] ... [binding n]) <body> ...

scm> (define x 6)
X

scm> (define z 7)
Z

scm> (let ¢

(X 3) (y 10)
)
(print x)
(print z)
(- XY)
(t X y)
)
5
7/

SCHEME - BEGIN EXPRESSIONS

(begin <expr 1> ... <expr n>)

e Evaluate all expressions in order in the current frame
e Return the value of the last expression

scm> (define x 6)

X

scm> (define y 7)

y

scm> (begin
(print 'hello)
(define z 8)
(- Xy 2)
(t xy 2)

hello
21

SCHEME - BEGIN EXPRESSIONS

(begin <expr 1> ... <expr n>)
e Useful when only one expression is expected

scm> (if (begin (print 0) 0)
(begin (print 1) (+ 2 3))
(begin (print 4) (+ 5 6))

—_—

WORKSHEET
WWSD, Q1

SCHEME LISTS *°

SCHEME LISTS - INTRO

o All Scheme Lists are linked lists! ®@@®
e 3 ways to construct a linked list:

car cdr car cdr car cdr

12 [3] X

scm> (cons 1 (cons 2 (cons 3 nil)))

(123)

scm> (list 1 2 3)
(123)

scm> '(1 2 3)
(123)

e (car 1lst) -returns the first element from the 1st, analogous
toO 1link.first

e (cdr 1lst) -returns the rest of the 1st as another Scheme list,
analogous to link.rest

scm> (define 1st (cons 1 (cons 2 (cons 3 nil))))

Ist
scm> 1lst

(123)
scm> (Car lst)

1

scm> (cdr 1lst)

(2 3)

scm> (car (cdr (cdr a)))
3

SCHEME LISTS - CONSTRUCTOR

(cons <first> <rest>)

e Similar to a linked list constructor
® <first>

® first element of the list

® <rest>
= must be another Scheme list, or nil if empty

= required
e Useful for recursion problems

scm> (define a (cons 1 (cons 'a nil)))

d
scm> a

(1a)
scm> (CONsS 6 a)
(6 1 a)

SCHEME LISTS - CONSTRUCTOR

(list <elel> <ele2> ...)

e Takes in an arbitrary number of elements in the list

e Evaluate each element (could be an expression) from left to right,
and return them as a Scheme list

e Useful when we know exactly what elements are in the list

scm> (define a (+ 6 1))

d

scm> a

)

scm> (list (- a 1) a (+ a 1))
(6 7 8)

SCHEME LISTS - CONSTRUCTOR

'"(...) OF (quote ...)

e Construct the exact list given, without any evaluation

scm> (define a (+ 6 1))
d

scm> (list 6 a 8)

(6 78)

scm> '(6 a 8)

(6 a 8)

scm> '(cons 1 2)

(cons 1 2)

scm> '(1 (2 3 4))
(1(234))

SCHEME LISTS - BUILT-IN PROCEDURES

® (null? 1lst) -returns #t if 1st is empty

® (append lstl 1lst2) - concatenates two lists together and
return them as a new list

® (length 1st) -return the length of 1st

scm> (null? nil)

#t
scm> (append '(c s) '(6 1 a))
(cs61a)

scm> (length ' (1 (2 3) 4))
3

CHECKING EQUALITY

® (= <a>)

= Both <a> and must be numbers
® (eg? <a>)

= Similar to is in Python

= Returns #t if <a> and are equivalent primitive values, or
if they refer to the same list

® (equal? <a>)

= For pairs (lists) - returns #t if they contain the same elements,
similarto 1stl == 1st2 in Python

= For primitive values - same as eqg?

CHECKING FOR EQUALITY

scm> (= (+ 2 3) (+ 1 4)) , mustbe two numbers

scm> (eq? (list 1 2) (list 1 2)) ,two different lists

scm> (equal? (list 1 2) (list 1 2)) , /lists with the same elements
scm> (define a (list 3 4))

scm> (define b a) ,aand b are the same list

scm> (eq? a b)

PRO TIPS

e Parenthesis MATTERS A LOT in Scheme - they are used to denoted
expressions in addition to grouping

= For example, we can have ((1) + (2)) in Python, but not
(+ (1) (2)) InScheme - correctversionis (+ 1 2)

e NO ITERATION, ONLY RECURSION @
e Make sure every call expression is wrapped in a parenthesis
e When using cond, make sure each clause is in its own parenthesis

e No return - can't terminate a function early. The return value has to
be the value of the last expression

WORKSHEET Q2-5

ATTENDANCE! @

go.csbla.org/mingxiao-att

e The attendance form and slides are both linked on
our section website!

e Please leave any anonymous feedback here
go.csbla.org/mingxian-anon

e Please do remember to fill out the form by midnight
today!!

https://go.cs61a.org/mingxiao-att
https://go.cs61a.org/mingxiao-index
https://go.cs61a.org/mingxiao-anon

