
CS 61A Iterators, Generators
Fall 2023 Discussion 6: October 4, 2023

Iterators
An iterable is an object whose elements we can go through one at a time. Iterables can be used in for loops and list
comprehensions. Iterables can also be converted into lists using the list function. Examples of iterables we have
seen so far in Python include strings, lists, tuples, and ranges.

>>> for x in "cat":
... print(x)
c
a
t
>>> [x*2 for x in (1, 2, 3)]
[2, 4, 6]
>>> list(range(4))
[0, 1, 2, 3]

Note the abstraction present here: given some iterable object, we have a set of defined actions that we can take with
it. In this discussion, we will peak below the abstraction barrier and examine how iterables are implemented “under
the hood”.

In Python, iterables are formally implemented as objects that can be passed into the built-in iter function to
produce an iterator. An iterator is another type of object that can produce elements one at a time with the next
function.

• iter(iterable): Returns an iterator over the elements of the given iterable.
• next(iterator): Returns the next element in an iterator, or raises a StopIteration exception if there are no

elements left.

For example, a list of numbers is an iterable, since iter gives us an iterator over the given sequence, which we can
navigate using the next function:

>>> lst = [1, 2, 3]
>>> lst_iter = iter(lst)
>>> lst_iter
<list_iterator object ...>
>>> next(lst)
1
>>> next(lst)
2
>>> next(lst)
3
>>> next(lst)
StopIteration

 



2 Iterators, Generators

Iterators are very simple. There is only a mechanism to get the next element in the iterator: next. There is no way
to index into an iterator and there is no way to go backward. Once an iterator has produced an element, there is no
way for us to get that element again unless we store it.

Note that iterators themselves are iterables: calling iter on an iterator simply returns the same iterator object.

For example, we can see what happens when we use iter and next with a list:

>>> lst = [1, 2, 3]
>>> next(lst) # Calling next on an iterable
TypeError: 'list' object is not an iterator
>>> list_iter = iter(lst) # Creates an iterator for the list
>>> next(list_iter) # Calling next on an iterator
1
>>> next(iter(list_iter)) # Calling iter on an iterator returns itself
2
>>> for e in list_iter: # Exhausts remainder of list_iter
... print(e)
3
>>> next(list_iter) # No elements left!
StopIteration
>>> lst # Original iterable is unaffected
[1, 2, 3]

The map and filter functions we learned earlier in class return iterator objects.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Iterators, Generators 3

Q1: WWPD: Iterators

What would Python display?

>>> s = "cs61a"
>>> s_iter = iter(s)
>>> next(s_iter)

>>> next(s_iter)

>>> list(s_iter)

>>> s = [[1, 2, 3, 4]]
>>> i = iter(s)
>>> j = iter(next(i))
>>> next(j)

>>> s.append(5)
>>> next(i)

>>> next(j)

>>> list(j)

>>> next(i)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

I

stopIteration

is I
I III

I

5

2

3.4

stopIteration



4 Iterators, Generators

Generators
We can define custom iterators by writing a generator function, which returns a special type of iterator called a
generator.

A generator function looks like a normal Python function, except that it has at least one yield statement. When
we call a generator function, a generator object is returned without evaluating the body of the generator function
itself. (Note that this is different from ordinary Python functions. While generator functions and normal functions
look the same, their evaluation rules are very different!)

When we first call next on the returned generator, we will begin evaluating the body of the generator function until
an element is yielded or the function otherwise stops (such as if we return). The generator remembers where we
stopped, and will continue evaluating from that stopping point on the next time we call next.

As with other iterators, if there are no more elements to be generated, then calling next on the generator will give
us a StopIteration.

For example, here’s a generator function:

def countdown(n):
print("Beginning countdown!")
while n >= 0:

yield n
n -= 1

print("Blastoff!")

To create a new generator object, we can call the generator function. Each returned generator object from a function
call will separately keep track of where it is in terms of evaluating the body of the function. Like all other iterators,
calling iter on an existing generator object returns the same generator object.

>>> c1, c2 = countdown(2), countdown(2)
>>> c1 is iter(c1) # a generator is an iterator
True
>>> c1 is c2
False
>>> next(c1)
Beginning countdown!
2
>>> next(c2)
Beginning countdown!
2

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Iterators, Generators 5

In a generator function, we can also have a yield from statement, which will yield each element from an iterator
or iterable.

>>> def gen_list(lst):
... yield from lst
...
>>> g = gen_list([1, 2])
>>> next(g)
1
>>> next(g)
2
>>> next(g)
StopIteration

Since generators are themselves iterators, this means we can use yield from to create recursive generators!

>>> def rec_countdown(n):
... if n < 0:
... print("Blastoff!)
... else:
... yield n
... yield from rec_countdown(n-1)
...
>>> r = rec_countdown(2)
>>> next(r)
2
>>> next(r)
1
>>> next(r)
0
>>> next(r)
Blastoff!
StopIteration

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Iterators, Generators

Q2: WWPD: Generators

What would Python display? If the command errors, input the specific error.

>>> def infinite_generator(n):
... yield n
... while True:
... n += 1
... yield n
>>> next(infinite_generator)

>>> gen_obj = infinite_generator(1)
>>> next(gen_obj)

>>> next(gen_obj)

>>> list(gen_obj)

>>> def rev_str(s):
... for i in range(len(s)):
... yield from s[i::-1]
>>> hey = rev_str("hey")
>>> next(hey)

>>> next(hey)

>>> next(hey)

>>> list(hey)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Ers
next y

Error
ranges 0.1.2

1st start end step

It
J lenin

naif cen Ians

n s to 1 n
sci i i en

e

IÉ sea i en EE4

n

y e n



Iterators, Generators 7

>>> def add_prefix(s, pre):
... if not pre:
... return
... yield pre[0] + s
... yield from add_prefix(s, pre[1:])
>>> school = add_prefix("schooler", ["pre", "middle", "high"])
>>> next(school)

>>> list(map(lambda x: x[:-2], school))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

middleschooler

ÉÉÉ
middleschool highschool



8 Iterators, Generators

Q3: Filter-Iter

Implement a generator function called filter_iter(iterable, f) that only yields elements of iterable for which
f returns True.

Remember, iterable could be infinite!

def filter_iter(iterable, f):
"""
Generates elements of iterable for which f returns True.
>>> is_even = lambda x: x % 2 == 0
>>> list(filter_iter(range(5), is_even)) # a list of the values yielded from the call
to filter_iter
[0, 2, 4]
>>> all_odd = (2*y-1 for y in range(5))
>>> list(filter_iter(all_odd, is_even))
[]
>>> naturals = (n for n in range(1, 100))
>>> s = filter_iter(naturals, is_even)
>>> next(s)
2
>>> next(s)
4
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1,2 3 47 is even

for elem in Tterable
if f elem
yieldelem

yieldfrom
xp
for x in terable if fix 7
2 43



Iterators, Generators 9

Q4: What’s the Difference?

Implement differences, a generator function that takes an iterable it whose elements are numbers. differences
should produce a generator that yield the differences between successive terms of it. If it has less than 2 values,
differences should yield nothing.

def differences(it):
"""
Yields the differences between successive terms of iterable it.

>>> d = differences(iter([5, 2, -100, 103]))
>>> [next(d) for _ in range(3)]
[-3, -102, 203]
>>> list(differences([1]))
[]
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 Iterators, Generators

Q5: Primes Generator

Write a function primes_gen that takes a single argument n and yields all prime numbers less than or equal to n in
decreasing order. Assume n >= 1. You may use the is_prime function included below, which we implemented in
Discussion 3.

First approach this problem using a for loop and using yield.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
def helper(i):

if i > (n ** 0.5): # Could replace with i == n
return True

elif n % i == 0:
return False

return helper(i + 1)
return helper(2)

def primes_gen(n):
"""Generates primes in decreasing order.
>>> pg = primes_gen(7)
>>> list(pg)
[7, 5, 3, 2]
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Iterators, Generators 11

Now that you’ve done it using a for loop and yield, try using yield from!

Optional Challenge: Now rewrite the generator so that it also prints the primes in ascending order.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
def helper(i):

if i > (n ** 0.5): # Could replace with i == n
return True

elif n % i == 0:
return False

return helper(i + 1)
return helper(2)

def primes_gen(n):
"""Generates primes in decreasing order.
>>> pg = primes_gen(7)
>>> list(pg)
[7, 5, 3, 2]
"""
if __________________________________:

return
if __________________________________:

yield __________________________________
yield from __________________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



12 Iterators, Generators

Q6: Stair Ways

In discussion 4, we considered how many different ways there are to climb a flight of stairs with n steps if you are
able to take 1 or 2 steps at a time. In this problem, you will write a generator function stair_ways that yields all
the different ways you can climb such a staircase.

Each “way” of climbing a staircase is represented by a list of 1s and 2s, representing the sequence of step sizes a
person should take to climb the flight.

For example, for a flight with 3 steps, there are three ways to climb it: * You can take one step each time: [1, 1, 1].
* You can take two steps then one step: [2, 1]. * You can take one step then two steps: [1, 2]..

Therefore, stair_ways(3) should yield [1, 1, 1], [2, 1], and [1, 2] in any order.

def stair_ways(n):
"""
Yields all ways to climb a set of N stairs taking
1 or 2 steps at a time.

>>> list(stair_ways(0))
[[]]
>>> s_w = stair_ways(4)
>>> sorted([next(s_w) for _ in range(5)])
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [2, 1, 1], [2, 2]]
>>> list(s_w) # Ensure you're not yielding extra
[]
"""
"*** YOUR CODE HERE ***"

# You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

É

o_O

i 2

12 Iif n o

return
not yield any

l

yield C
if n c o

seen i

sees stair way

E

one step stair ways n 1

for x in one step
yield x is

for x in two steps
yield x 2


