
CS 61A OOP, String Representation
Fall 2023 Discussion 7: October 11, 2023

Note: For formal explanations of the concepts on this discussion, feel free to look at the Appendix section on the
back of the worksheet.

OOP
Here’s a recap of the OOP vocab we’ve learned so far:

• class: a template for creating objects

• instance: a single object created from a class

• instance variable: a data attribute of an object, specific to an instance

• class variable: a data attribute of an object, shared by all instances of a class

• method: a bound function that may be called on all instances of a class

Instance variables, class variables, and methods are all considered attributes of an object.

Q1: WWPD: Legally Blonde OOP

Below we have defined the classes Student and Professor. Remember that Python passes the self argument
implicitly to methods when calling the method directly on an object.

class Student:

extension_days = 3 # this is a class variable

def __init__(self, name, staff):
self.name = name # this is an instance variable
self.understanding = 0
staff.add_student(self)
print("Added", self.name)

def visit_office_hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class Professor:

def __init__(self, name):
self.name = name
self.students = {}

def add_student(self, student):
self.students[student.name] = student

dicttypva

2 OOP, String Representation

def assist(self, student):
student.understanding += 1

def grant_more_extension_days(self, student, days):
student.extension_days = days

What will the following lines output?

>>> callahan = Professor("Callahan")
>>> elle = Student("Elle", callahan)

>>> elle.visit_office_hours(callahan)

>>> elle.visit_office_hours(Professor("Paulette"))

>>> elle.understanding

>>> [name for name in callahan.students]

>>> x = Student("Vivian", Professor("Stromwell")).name

>>> x

>>> elle.extension_days

>>> callahan.grant_more_extension_days(elle, 7)
>>> elle.extension_days

>>> Student.extension_days

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

D

AddedElle

Thanks Callahan

Thanks Paulette

pkeys2

inn'sElle's

Vivian

i

3

OOP, String Representation 3

Q2: Email

We would like to write three different classes (Server, Client, and Email) to simulate a system for sending and
receiving emails. A Server has a dictionary mapping client names to Client objects, and can both send Emails
to Clients in the Server and register new Clients. A Client can both compose emails (which first creates a new
Email object and then sends it to the recipient client through the server) and receive an email (which places an email
into the client’s inbox).

Emails will only be sent/received within the same server, so clients will always use the server they’re registered in to
send emails to other clients that are registered in the same rerver.

An example flow: A Client object (Client 1) composes an Email object with message "hello" with recipient
Client 2, which the Server routes to Client 2’s inbox.

Email example

Fill in the definitions below to finish the implementation!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 OOP, String Representation

class Email:
"""
Every email object has 3 instance attributes: the
message, the sender name, and the recipient name.
>>> email = Email('hello', 'Alice', 'Bob')
>>> email.msg
'hello'
>>> email.sender_name
'Alice'
>>> email.recipient_name
'Bob'
"""
def __init__(self, msg, sender_name, recipient_name):

"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

sq ME
self sender name sender name

self recipient name recipient name

OOP, String Representation 5

class Client:
"""
Every Client has three instance attributes: name (which is
used for addressing emails to the client), server
(which is used to send emails out to other clients), and
inbox (a list of all emails the client has received).

>>> s = Server()
>>> a = Client(s, 'Alice')
>>> b = Client(s, 'Bob')
>>> a.compose('Hello, World!', 'Bob')
>>> b.inbox[0].msg
'Hello, World!'
>>> a.compose('CS 61A Rocks!', 'Bob')
>>> len(b.inbox)
2
>>> b.inbox[1].msg
'CS 61A Rocks!'
"""
def __init__(self, server, name):

self.inbox = []
"*** YOUR CODE HERE ***"

def compose(self, msg, recipient_name):
"""Send an email with the given message msg to the given recipient client."""
"*** YOUR CODE HERE ***"

def receive(self, email):
"""Take an email and add it to the inbox of this client."""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

self server server
self name name

server register client self name

email Email msg self name recipient name

Teifiserver send email

self inbox append email

6 OOP, String Representation

class Server:
"""
Each Server has one instance attribute: clients (which
is a dictionary that associates client names with
client objects).
"""
def __init__(self):

self.clients = {}

def send(self, email):
"""
Take an email and put it in the inbox of the client
it is addressed to.
"""
"*** YOUR CODE HERE ***"

def register_client(self, client, client_name):
"""
Takes a client object and client_name and adds them
to the clients instance attribute.
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

set.org g
receive email

sfckntsgciient.name client

OOP, String Representation 7

Q3: Keyboard

Below is the definition of a Button class, which represents a button on a keyboard. It has three attributes: pos
(numerical position of the button on the keyboard), key (the letter of the button), and times_pressed (the number
of times the button is pressed).

class Button:
def __init__(self, pos, key):

self.pos = pos
self.key = key
self.times_pressed = 0

We’d like to create a Keyboard class that takes in an arbitrary number of Buttons and stores these Buttons in a
dictionary. The keys in the dictionary will be ints that represent the position on the Keyboard, and the values will
be the respective Button. Fill out the methods in the Keyboard class according to each description.

Important: Utilize the doctests as a reference for the behavior of a Keyboard instance.

• Hint: You can iterate over *args as if it were a list.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 OOP, String Representation

class Button:
def __init__(self, pos, key):

self.pos = pos
self.key = key
self.times_pressed = 0

class Keyboard:
"""A Keyboard stores an arbitrary number of Buttons in a dictionary.
Each dictionary key is a Button's position, and each dictionary
value is the corresponding Button.
>>> b1, b2 = Button(5, "H"), Button(7, "I")
>>> k = Keyboard(b1, b2)
>>> k.buttons[5].key
'H'
>>> k.press(7)
'I'
>>> k.press(0) # No button at this position
''
>>> k.typing([5, 7])
'HI'
>>> k.typing([7, 5])
'IH'
>>> b1.times_pressed
2
>>> b2.times_pressed
3
"""
def __init__(self, *args):

for _________ in ________________:

def press(self, pos):
"""Takes in a position of the button pressed, and
returns that button's output."""
if ____________________:

def typing(self, typing_input):
"""Takes in a list of positions of buttons pressed, and
returns the total output."""

for ________ in ____________________:

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, String Representation 9

Inheritance
Recall that a subclass (child class) by default inherits all of the methods and class attributes of its superclass (parent
class). The subclass can override methods and class attributes by redefining them. super() can be used to access
the methods and class attributes of the parent class.

Q4: That’s inheritance, init?

Let’s say we want to create a class Monarch that inherits from another class, Butterfly. We’ve partially written
an __init__ method for Monarch. For each of the following options, state whether it would correctly complete
the method so that every instance of Monarch has all of the instance attributes of a Butterfly instance. You may
assume that a monarch butterfly has the default value of 2 wings.

class Butterfly():
def __init__(self, wings=2):

self.wings = wings

class Monarch(Butterfly):
def __init__(self):

self.colors = ['orange', 'black', 'white']

super.__init__()

super().__init__()

Butterfly.__init__()

Butterfly.__init__(self)

Some butterflies like the Owl Butterfly have adaptations that allow them to mimic other animals with their wing
patterns. Let’s write a class for these MimicButterflies. In addition to all of the instance variables of a regular
Butterfly instance, these should also have an instance variable mimic_animal describing the name of the animal
they mimic. Fill in the blanks in the lines below to create this class.

class MimicButterfly(______________):
def __init__(self, mimic_animal):

_______________.__init__()
______________ = mimic_animal

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

T

X obj methodLangs
class method obj args

T

t

supp
selfmimicanimal

https://en.wikipedia.org/wiki/Owl_butterfly

10 OOP, String Representation

Q5: Cat

Below is the implementation of a Pet class. Each pet has three instance attributes (is_alive, name, and owner), as
well as two class methods (eat and talk).

class Pet():

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

Implement the Cat class, which inherits from the Pet class seen above. To complete the implementation, override
the __init__ and talk methods and add a new lose_life method.

Hint: You can call the __init__ method of Pet (the superclass of Cat) to set a cat’s name and owner.

Hint: The __init__ method can be called at any point and used just like any other method.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, String Representation 11

class Cat(Pet):

def __init__(self, name, owner, lives=9):
"*** YOUR CODE HERE ***"

def talk(self):
"""Print out a cat's greeting.

>>> Cat('Thomas', 'Tammy').talk()
Thomas says meow!
"""
"*** YOUR CODE HERE ***"

def lose_life(self):
"""Decrements a cat's life by 1. When lives reaches zero,
is_alive becomes False. If this is called after lives has
reached zero, print 'This cat has no more lives to lose.'
"""
"*** YOUR CODE HERE ***"

def revive(self):
"""Revives a cat from the dead. The cat should now have
9 lives and is_alive should be true. Can only be called
on a cat that is dead. If the cat isn't dead, print
'This cat still has lives to lose.'
"""
if not self.is_alive:

else:

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 OOP, String Representation

Q6: NoisyCat

More cats! Fill in this implementation of a class called NoisyCat, which is just like a normal Cat. However, NoisyCat
talks a lot: in fact, it talks twice as much as a regular Cat! If you’d like to test your code, feel free to copy over your
solution to the Cat class above.

class __________ # Fill me in!
"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?
"*** YOUR CODE HERE ***"

def talk(self):
"""Talks twice as much as a regular cat.
>>> NoisyCat('Magic', 'James').talk()
Magic says meow!
Magic says meow!
"""
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Representation: Repr, Str
Recall that, for any given object obj:

• repr(obj) is used to get a formal representation of obj, which is displayed when obj is evaluated directly in
the interpreter. The __repr__ method of obj defines the output of repr(obj).

• str(obj) is used to get a human-readable representation of obj, which is displayed when print(obj) is
evaluated directly in the interpreter. The __str__ method of obj defines the output of str(obj).

Q7: WWPD: Repr-esentation

Note: This is not the typical way repr is used, nor is this way of writing repr recommended, this problem
is mainly just to make sure you understand how repr and str work.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, String Representation 13

class Car:
def __init__(self, color):

self.color = color

def __repr__(self):
return self.color

def __str__(self):
return self.color * 2

class Garage:
def __init__(self):

print('Vroom!')
self.cars = []

def add_car(self, car):
self.cars.append(car)

def __repr__(self):
print(len(self.cars))
ret = ''
for car in self.cars:

ret += str(car)
return ret

Given the above class definitions, what will the following lines output?

>>> Car('red')

>>> print(Car('red'))

>>> repr(Car('blue'))

>>> g = Garage()

>>> g.add_car(Car('red'))
>>> g.add_car(Car('blue'))
>>> g

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

14 OOP, String Representation

Q8: Cat Representation

Now let’s implement the __str__ and __repr__ methods for the Cat class from earlier so that they exhibit the
following behavior:

>>> cat = Cat("Felix", "Kevin")
>>> cat
Felix, 9 lives
>>> cat.lose_life()
>>> cat
Felix, 8 lives
>>> print(cat)
Felix

(The rest of the Cat class is omitted here, but assume all methods from the Cat class
above are implemented)
def __repr__(self):

"*** YOUR CODE HERE ***"

def __str__(self):
"*** YOUR CODE HERE ***"

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP, String Representation 15

Appendix: Explanation of Material
OOP
Object-oriented programming (OOP) is a programming paradigm that allows us to treat data as objects, like
we do in real life.

For example, consider the class Student. Each of you as individuals is an instance of this class.

Details that all CS 61A students have, such as name, are called instance variables. Every student has these
variables, but their values differ from student to student. A variable that is shared among all instances of Student
is known as a class variable. For example, the extension_days attribute is a class variable as it is a property of
all students.

All students are able to do homework, attend lecture, and go to office hours. When functions belong to a specific
object, they are called methods. In this case, these actions would be methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance variable: a data attribute of an object, specific to an instance

• class variable: a data attribute of an object, shared by all instances of a class

• method: a bound function that may be called on all instances of a class

Instance variables, class variables, and methods are all considered attributes of an object.

Inheritance
To avoid redefining attributes and methods for similar classes, we can write a single base class from which the
similar classes inherit. For example, we can write a class called Pet and define Dog as a subclass of Pet:

class Pet:

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):

def talk(self):
super().talk()
print('This Dog says woof!')

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

16 OOP, String Representation

Inheritance represents a hierarchical relationship between two or more classes where one class is a more specific
version of the other: a dog is a pet (We use is a to describe this sort of relationship in OOP languages, and not to
refer to the Python is operator).

Since Dog inherits from Pet, the Dog class will also inherit the Pet class’s methods, so we don’t have to redefine
__init__ or eat. We do want each Dog to talk in a Dog-specific way, so we can override the talk method.

We can use super() to refer to the superclass of self, and access any superclass methods as if we were an instance
of the superclass. For example, super().talk() in the Dog class will call the talk() method from the Pet class,
but passing the Dog instance as the self.

This is a little bit of a simplification, and if you’re interested you can read more in the Python documentation on
super.

Representation: Repr, Str
There are two main ways to produce the “string” of an object in Python: str() and repr(). While the two are
similar, they are used for different purposes.

str() is used to describe the object to the end user in a “Human-readable” form, while repr() can be thought of
as a “Computer-readable” form mainly used for debugging and development.

When we define a class in Python, __str__ and __repr__ are both built-in methods for the class.

We can call those methods using the global built-in functions str(obj) or repr(obj) instead of dot notation, obj.
__repr__() or obj.__str__().

In addition, the print() function calls the __str__ method of the object and displays the returned string with
the quotations removed, while simply calling the object in interactive mode in the interpreter calls the _repr__
method and displays the returned string with the quotations removed.

Here are some examples:

class Rational:

def __init__(self, numerator, denominator):
self.numerator = numerator
self.denominator = denominator

def __str__(self):
return str(self.numerator) + '/' + str(self.denominator)

def __repr__(self):
return 'Rational' + '(' + str(self.numerator) + ',' + str(self.denominator) + ')'

>>> a = Rational(1, 2)
>>> [str(a), repr(a)]
['1/2', 'Rational(1,2)']
>>> print(a)
1/2
>>> a
Rational(1,2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://docs.python.org/3/library/functions.html#super

