CS 61A

Fall 2023

Linked Lists, Efficiency

Discussion 8: October 18, 2023

Note: For formal explanations of the concepts on this discussion, feel free to look at the Appendix section on the back of the worksheet.

Linked Lists

A linked list is a recursive data structure that represents sequences. The Link class implements linked lists in Python. Each Link instance has a first attribute (which stores the first value of the linked list) and a rest attribute (which points to the rest of the linked list). An empty linked list is represented as Link. empty, and a non-empty linked list is represented as a Link instance.

Q1: WWPD: Linked Lists

What would Python display? Try drawing the box-and-pointer diagram if you get stuck!

```
>>> link = Link(1, Link(2, Link(3)))
>>> link.first
```

1
>>> link.rest.first

2

```
>>> link.rest.rest.rest is Link.empty
True link }
>>> link.rest.first
```

3

```
>>> link = Link(1) link }
>>> link.rest.rest.rest.rest.first
```

I

```
>>> link = Link(2, Link(3, Link(4)))
>>> link2 = Link(1, link)
>>> link2.rest.first
```

2

```
>>> link = Link(1000, 2000)
```

Error

```
>>> link = Link(1000, Link())
```


>>> link = Link(Link("Hello"), Link(2))
>>> link.first.rest is Link.Empty

True

Q2: Sum Nums

Write a function sum_nums that receives a linked list s and returns the sum of its elements. You may assume the elements of s are all integers. Try to implement sum_nums with recursion!

```
def sum_nums(s):
    """
    Returns the sum of the elements in s.
    >>> a = Link(1, Link(6, Link(7)))
    >>> sum_nums (a)
    14
    "*** YOUR CODE HERE ***"
    if s}\mathrm{ is Link. empty:
        return 0
    return s.first + sum- nums (s.rest)
# You can use more space on the back if you want
```


Q3: Remove All

Write a function remove_all that takes a linked list and a value as input. This function mutates the linked list by removing all nodes that store value.

You may assume the first element of the linked list is not equal to value. You should mutate the input linked list; remove_all does not return anything.

```
```

def remove_all(link, value):

```
```

def remove_all(link, value):
"""Removes all nodes in link that contain value. The first element of
"""Removes all nodes in link that contain value. The first element of
link is never equal to value.
link is never equal to value.
>>> l1 = Link(0, Link(2, Link(2, Link(3, Link(1, Link(2, Link(3)))))))
>>> l1 = Link(0, Link(2, Link(2, Link(3, Link(1, Link(2, Link(3)))))))
>>> print(l1)
>>> print(l1)
<0 2 2 3 1 2 3>
<0 2 2 3 1 2 3>
>>> remove_all(l1, 2)
>>> remove_all(l1, 2)
>>> print(l1)
>>> print(l1)
<0 3 1 3>
<0 3 1 3>
>>> remove_all(l1, 3)
>>> remove_all(l1, 3)
>>> print(l1)
>>> print(l1)
<0 1>
<0 1>
>>> remove_all(l1, 3)
>>> remove_all(l1, 3)
>>> print(l1) link }
>>> print(l1) link }
"""
"""
"*** YOUR CODE HERE ***"
"*** YOUR CODE HERE ***"
if link is link.empty or
if link is link.empty or
link.rest is link.empty:
link.rest is link.empty:
return
return
if link.rest.finst }==value:
if link.rest.finst==value:
link.rest = link, rest. rest
link.rest = link, rest. rest
remove - all (link, value)
link. rest=\mathrm{ link, rest. rest
link. rest }=\mathrm{ link, rest. rest
link. rest }=\mathrm{ link, rest. rest

```
```

 link. rest }=\mathrm{ link, rest. rest
    ```
```

```
    link->11+3% 21>
```

 link->11+3% 21>
    ```
    link->11+3% 21>
                                    link is not link. empty or
```

 link is not link. empty or
    ```

\section*{Q4: Flip Two}

Write a recursive function flip_two that receives a linked list s and flips every pair of values in s.
```

def flip_two(s):
"""
Flips every pair of values in s.
>>> one_lnk = Link(1)
>>> flip_two(one_lnk)
>>> one_lnk
Link(1)
>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> flip_two(lnk)
>>> lnk
Link(2, Link(1, Link(4, Link(3, Link(5)))))
"""
"*** YOUR CODE HERE ***"

```
"*** YOUR CODE HERE ***"

\section*{Q5: Make Circular}

Write a function make_circular that takes in a non-circular, non-empty linked list s and mutates so that it becomes circular.
```

def make_circular(s):
"""Mutates linked list s into a circular linked list.
>>> lnk = Link(1, Link(2, Link(3)))
>>> make_circular(lnk)
>>> lnk.rest.first
2
>>> lnk.rest.rest.first
3
>>> lnk.rest.rest.rest.first
1
>>> lnk.rest.rest.rest.rest.first
2
" ""
"*** YOUR CODE HERE ***"

```
\# You can use more space on the back if you want

\section*{Efficiency}

A function's runtime complexity is a measure of how the runtime of the function changes as its input changes. A function \(f(n)\) has...
- constant runtime if the runtime of \(f\) does not depend on \(n\). Its runtime is \(\Theta(1)\).
- \(\log\) arithmic runtime if the runtime of \(f\) is proportional to \(\log (n)\). Its runtime is \(\Theta(\log (n))\).
- linear runtime if the runtime of \(f\) is proportional to \(n\). Its runtime is \(\Theta(n)\).
- quadratic runtime if the runtime of \(f\) is proportional to \(n^{\wedge} 2\). Its runtime is \(\Theta\left(n^{\wedge} 2\right)\).
- exponential runtime if the runtime of \(f\) is proportional to \(b^{\wedge} n\), for some constant \(b\). Its runtime is \(\Theta\left(b^{\wedge} n\right)\).

\section*{Q6: WWPD: Orders of Growth}

What is the worst-case runtime of is_prime?
```

def is_prime(n):
for i in range(2, n):
if n % i == 0:
return False
return True

```

Choose one of:
- Constant
- Logarithmic
- Linear
- Quadratic
- Exponential
- None of these

What is the order of growth of the runtime of \(\operatorname{bar}(\mathrm{n})\) with respect to n ?
```

def bar(n):
i, sum = 1, 0
while i <= n:
sum += biz(n)
i += 1
return sum
def biz(n):
i, sum = 1, 0
while i <= n:
sum += i**3
i += 1
return sum

```

Choose one of:
- Constant
- Logarithmic
- Linear
- Quadratic
- Exponential
- None of these

What is the order of growth of the runtime of foo in terms of \(n\), where \(n\) is the length of lst? Assume that slicing a list and evaluating len(lst) take constant time.

Express your answer with \(\Theta\) notation.
```

def foo(lst, i):
mid = len(lst) // 2
if mid == 0:
return lst
elif i > 0:
return foo(lst[mid:], -1)
else:
return foo(lst[:mid], 1)

```

\section*{Appendix: Explanation of Material Linked Lists}

The Link class implements linked lists in Python. Each Link instance has a first attribute (which stores the first value of the linked list) and a rest attribute (which points to the rest of the linked list).
```

class Link:
empty = ()
def ___init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest
def __repr__(self):
if self.rest is not Link.empty:
rest_repr = ', ' + repr(self.rest)
else:
rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'
def __str__(self):
string = '<'
while self.rest is not Link.empty:
string += str(self.first) + ' '
self = self.rest
return string + str(self.first) + '>'

```

An empty linked list is represented as Link.empty, and a non-empty linked list is represented as a Link instance.
The rest attribute of a Link instance is always another linked list! When Link instances are linked via their rest attributes, a sequence is formed.

To check if a linked list is empty, compare it to the class attribute Link.empty.

\section*{Efficiency}

Throughout this class, we have mainly focused on correctness - whether a program produces the correct output. However, computer scientists are also interested in creating efficient solutions to problems. One way to quantify efficiency is to determine how a function's runtime changes as its input changes. In this class, we measure a function's runtime by the number of operations it performs.

A function \(f(n)\) has...
- constant runtime if the runtime of \(f\) does not depend on \(n\). Its runtime is \(\Theta(1)\).
- logarithmic runtime if the runtime of \(f\) is proportional to \(\log (n)\). Its runtime is \(\Theta(\log (n))\).
- linear runtime if the runtime of \(f\) is proportional to \(n\). Its runtime is \(\Theta(n)\).
- quadratic runtime if the runtime of \(f\) is proportional to \(n^{\wedge} 2\). Its runtime is \(\Theta\left(n^{\wedge} 2\right)\).
- exponential runtime if the runtime of \(f\) is proportional to \(b^{\wedge} n\), for some constant \(b\). Its runtime is \(\Theta\left(b^{\wedge} n\right)\).

Example 1: It takes a single multiplication operation to compute square(1), and it takes a single multiplication operation to compute square (100). In general, calling square ( \(n\) ) results in a constant number of operations that does not vary according to \(n\). We say square has a runtime complexity of \(\Theta(1)\).
\begin{tabular}{lccr}
\hline input & function call & return value & operations \\
\hline 1 & square(1) & \(1^{*} 1\) & 1 \\
2 & square(2) & \(2^{*} 2\) & 1 \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
100 & square(100) & \(100^{*} 100\) & 1 \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
n & square(n) & \(\mathrm{n}^{*} \mathrm{n}\) & 1 \\
\hline
\end{tabular}

Example 2: It takes a single multiplication operation to compute factorial(1), and it takes 100 multiplication operations to compute factorial(100). As \(n\) increases, the runtime of factorial increases linearly. We say factorial has a runtime complexity of \(\Theta(n)\).
\begin{tabular}{lccr}
\hline input & function call & return value & operations \\
\hline 1 & factorial(1) & \(1^{*} 1\) & 1 \\
2 & factorial(2) & \(2^{*} 1^{*} 1\) & 2 \\
\(\ldots . .\). & \(\ldots\) & \(\ldots\) \\
100 & factorial(100) & \(100^{*} 99^{*} \ldots{ }^{*} 1^{*} 1\) & 100 \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\(n\) & factorial(n) & \(n^{*}(n-1)^{*} . .{ }^{*} 1^{*} 1\) & \(n\) \\
\hline
\end{tabular}

Example 3: Consider the following function:
```

def bar(n):
for a in range(n):
for b in range(n):
print(a,b)

```

Evaulating bar(1) results in a single print call, while evalulating bar(100) results in 10,000 print calls. As \(n\)
increases, the runtime of bar increases quadratically. We say bar has a runtime complexity of \(\Theta\left(n^{\wedge} 2\right)\).
\begin{tabular}{lcr}
\hline input & function call & operations (prints) \\
\hline 1 & \(\operatorname{bar}(1)\) & 1 \\
2 & \(\operatorname{bar}(2)\) & 4 \\
\(\ldots\). & \(\ldots\) & \(\ldots\) \\
100 & \(\operatorname{bar}(100)\) & 10000 \\
\(\ldots\). & \(\ldots\) & \(\ldots\) \\
n & \(\operatorname{bar}(\mathrm{n})\) & n 2 \\
\hline
\end{tabular}

Example 4: Consider the following function:
```

def rec(n):
if n == 0:
return 1
else:
return rec(n - 1) + rec(n - 1)

```

Evaluating rec(1) results in a single addition operation. Evaluating rec(4) results in 2^4-1 = 15 addition operations, as shown by the diagram below.

During the evaulation of rec(4), there are two calls to rec(3), four calls to rec(2), eight calls to rec(1), and 16 calls to rec (0).

So we have eight instances of \(\mathrm{rec}(0)+\mathrm{rec}(0)\), four instances of \(\mathrm{rec}(1)+\mathrm{rec}(1)\), two instances of \(\mathrm{rec}(2)+\mathrm{rec}\) (2), and a single instance of \(\mathrm{rec}(3)+\mathrm{rec}(3)\), for a total of \(1+2+4+8=15\) addition operations.

As \(n\) increases, the runtime of rec increases exponentially. In particular, the runtime of rec approximately doubles when we increase \(n\) by 1 . We say rec has a runtime complexity of \(\Theta\left(2^{\wedge} n\right)\).
\begin{tabular}{lccr}
\hline input & function call & return value & operations \\
\hline 1 & \(\operatorname{rec}(1)\) & 2 & 1 \\
2 & \(\operatorname{rec}(2)\) & 4 & 3 \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
10 & \(\operatorname{rec}(10)\) & 1024 & 1023 \\
\(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
n & \(\operatorname{rec}(\mathrm{n})\) & \(2 \curlyvee \mathrm{n}\) & \(2 \wedge \mathrm{n}-1\) \\
\hline
\end{tabular}

Tips for finding the order of growth of a function's runtime:
- If the function is recursive, determine the number of recursive calls and the runtime of each recursive call.
- If the function is iterative, determine the number of inner loops and the runtime of each loop.
- Ignore coefficients. A function that performs n operations and a function that performs \(100 * \mathrm{n}\) operations are both linear.
- Choose the largest order of growth. If the first part of a function has a linear runtime and the second part has a quadratic runtime, the overall function has a quadratic runtime.
- In this course, we only consider constant, logarithmic, linear, quadratic, and exponential runtimes.


Above: Call structure of rec(4).```

