
CS 61A Macros
Fall 2023 Discussion 12: November 15, 2023

Note: For extended explanations of the concepts on this discussion, feel free to look at the Appendix section on
the back of the worksheet.

Macros
• Evaluate the operator to get a macro.
• Apply the macro to the unevaluated operands. This involves the following steps.

– Bind the unevaluated operands to the formal parameters in a new frame.
– Evaluate each expression in the body of the macro using normal Scheme evaluation rules.
– The value of the last expression is returned.

• Evaluate the expression produced by the macro in the frame it was called in.

Q1: Shapeshifting Expressions

When writing macros in Scheme, the goal is to create a list of symbols that represents a certain Scheme expression.
In this question, we’ll practice different methods of creating such Scheme lists.

We have executed the following code to define x and y in our current environment.

(define x '(+ 1 1))
(define y '(+ 2 3))

We want to use x and y to build a list that represents the following expression:

(begin (+ 1 1) (+ 2 3))

What would be the result of calling eval on a quoted version of the expression above?

(eval '(begin (+ 1 1) (+ 2 3)))

Now that we know what this expression should evaluate to, let’s build our scheme list.

How would we construct the scheme list for the expression (begin (+ 1 1) (+ 2 3)) using quasiquotation?

How would we construct this scheme list using the list procedure?

How would we construct this scheme list using the cons procedure?

 

I

5

begin x y

egin I 1
cons In con cons 351



2 Macros

Q2: WWSD: Macros

For each expression, write what the Scheme interpreter would output.

scm> (define-macro (f x) (car x))

scm> (f (2 3 4))

scm> (define x 2000)

scm> (f (x y z))

scm> (define-macro (g x) (+ x 2))

scm> (g 2)

scm> (g (+ 2 3))

scm> (define-macro (h x) (list '+ x 2))

scm> (h (+ 2 3))

scm> (define-macro (if-else-5 condition consequent) `(if ,condition ,consequent 5))

scm> (if-else-5 #f (/ 1 0))

scm> (if-else-5 (= 1 1) 2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

I Elian z
i

Z

w

II is

g

µ Is 2

Error
list t it 231 21

h

7

if else 5
if It got Io

J

Z



Macros 3

Q3: Mystery Macro

For this question, we’ll consider the following macro:

(define-macro (mystery expr)
`(let ((/ (lambda (a b) (if (= b 0) 1 (/ a b))))) ,expr))

What does this macro do?

Why can’t we do the same thing with a regular procedure?

(define (mystery-proc expr)
... )

Professor Oppenheimer has written a procedure letter-grade to determine a student’s letter grade on an assignment
given a number of points earned and a number of points possible.

(define (letter-grade earned possible)
(cond

((>= (/ earned possible) 0.9) 'A)
((>= (/ earned possible) 0.8) 'B)
((>= (/ earned possible) 0.7) 'C)
((>= (/ earned possible) 0.6) 'D)
(else 'F)))

The procedure works well, but Professor Oppenheimer has noticed that some optional assignments have 0 points
possible, which causes a division by zero error. Professor Oppenheimer wants to define letter-grade such that all
students will receive an A for assignments with 0 points possible. Can you help him out using mystery?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

let ccvan exerts wars express body I

were In b T.in
YEEaaoterrormgexpr

will beevaluated
beforeprocedure isapplied

a



4 Macros

(define-macro (mystery expr)
`(let ((/ (lambda (a b) (if (= b 0) 1 (/ a b))))) ,expr))

(define (letter-grade earned possible)
'YOUR-CODE-HERE

)

; Tests
(expect (letter-grade 100 0) A)
(expect (letter-grade 95 100) A)
(expect (letter-grade 85 100) B)
(expect (letter-grade 75 100) C)
(expect (letter-grade 65 100) D)
(expect (letter-grade 55 100) F)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

imy



Macros 5

Q4: Max Macro

Define the macro max, which takes in two expressions expr1 and expr2 and returns the maximum of their values. If
they have the same value, return the value of the first expression. For this question, it’s okay if your solution
evaluates expr1 and expr2 more than once. As an extra challenge, think about how you could use the let
special form to ensure that expr1 and expr2 are evaluated only once.

scm> (max 5 10)
10
scm> (max 12 12)
12
scm> (max 100 99)
100

First, try using quasiquotation to implement this macro procedure.

(define-macro (max expr1 expr2)
'YOUR-CODE-HERE

)

; Test
(expect (max -3 (+ 1 2)) 3)
(expect (max 1 1) 1)

Now, try writing this macro using list.

(define-macro (max expr1 expr2)
'YOUR-CODE-HERE

)

; Test
(expect (max -3 (+ 1 2)) 3)
(expect (max 1 1) 1)

Finally, write this macro using cons.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Macros

(define-macro (max expr1 expr2)
'YOUR-CODE-HERE

)

; Test
(expect (max -3 (+ 1 2)) 3)
(expect (max 1 1) 1)

Reflect: was it necessary to use macros to do this? Or could we have done the same thing with a procedure?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Macros 7

Q5: Multiple Assignment

Recall that in Scheme, the expression returned by a macro procedure is evaluated in the environment that called the
macro. This concept allows us to set variables in the calling environment using calls to macro procedures! This is
not possible with regular scheme procedures because any define expressions would be evaluated in the procedure’s
environment (and thus bind a symbol in that environment rather than the calling environment). In this problem,
we’ll explore this idea in more detail.

In Python, we can bind two variables in one line as follows:

>>> x, y = 1, 2
>>> x
1
>>> y
2
>>> x, y = y, x # swap the values of x and y
>>> x
2
>>> y
1

The expressions on the right of the assignment are first evaluated, then assigned to the variables on the left. Let’s
try to implement a similar feature in Scheme using macros.

Write a macro multi-assign which takes in two symbols sym1 and sym2 as well as two expressions expr1 and expr2.
It should bind sym1 to the value of expr1 and sym2 to the value of expr2 in the environment from which the macro
was called.

scm> (multi-assign x y 1 (- 3 1))
scm> x
1
scm> y
2

First, implement a version of multi-assign which evaluates expr1 first, binds it to sym1, then evaluates expr2 and
binds it to sym2 (the order here is important).

(define-macro (multi-assign sym1 sym2 expr1 expr2)
`(_________ (define ____________ ____________) (define ____________ ____________)
undefined)

)

; Tests
(multi-assign x y 1 2)
(expect (= x 1) #t)
(expect (= y 2) #t)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1pm Il Imi Era



8 Macros

This solution is great, but it doesn’t quite behave in quite the same way that it does in Python:

scm> (multi-assign x y 1 (+ 2 3))
scm> x
1
scm> y
5
scm> (multi-assign x y y x)
scm> x
5
scm> y
5

Notice that x and y were not swapped like we wanted. This is because of the order of evaluation and bindings: first,
the value of y is bound to x. Afterwards, x is evaluated and bound to y, but at this point, x no longer has its old
value, it is actually the value of y!

Now, try writing a version of multi-assign which matches the behavior in Python, i.e. expr1 and expr2 should be
both evaluated before being assigned to sym1 and sym2.

scm> (multi-assign x y 5 6)
scm> x
5
scm> y
6
scm> (multi-assign x y y x)
scm> x
6
scm> y
5

(define-macro (multi-assign sym1 sym2 expr1 expr2)
`(_________ (define ,sym2 (list ______________________________________))

(define ___________ ____________________________________________)
(define ___________ ____________________________________________))
undefined))

)

; Tests
(multi-assign x y 1 2)
(expect (= x 1) #t)
(expect (= y 2) #t)
(multi-assign x y y x)
(expect (= x 2) #t)
(expect (= y 1) #t)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

I

I
Xy x

begin

x

symz expri extra
sym sym to
symz sym Ci

begin define x expri
define y extra
definesym x

s
Ltte'Ene4m29



Macros 9

Q6: Replace

Write the macro replace, which takes in a Scheme expression expr, a Scheme symbol or number old, and a Scheme
expression new. The macro replaces all instances of old with new before running the modified code.

(define (replace-helper e o n)
(if ___________________________________

___________________________________________________________________
___________________________________________________________________))

(define-macro (replace expr old new)
(replace-helper expr old new))

; Tests
(expect (replace (define x 2) x y) y)
(expect (= y 2) #t)
(expect (replace (+ 1 2 (or 2 3)) 2 0) 1)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 Macros

Appendix: Explanation of Material
Macros
So far we’ve been able to define our own procedures in Scheme using the define special form. This doesn’t allow us
to do anything, however. Consider what happens when we try to write a function that evaluates a given expression
twice:

scm> (define (twice expr) (begin expr expr))
twice
scm> (twice (print 'woof))
woof

Since twice is a procedure, we evaluate its call expression by first evaluating the operator and then each operand.
That means that woof was printed when we evaluated the operand (print 'woof). Inside the body of twice, the
name expr is bound to the value undefined, so the expression (begin expr expr) does nothing at all!

The problem here is clear: we need to prevent the given expression from evaluating until we’re inside the body of
the procedure. Wouldn’t it be cool if we could define our own special forms where we could avoid such the pitfalls
of call expressions? This is where the define-macro special form, which has identical syntax to the regular define
form, comes in:

scm> (define-macro (twice expr) (list 'begin expr expr))
twice

define-macro allows us to define what’s known as a macro, which is simply a way for us to process unevaluated
input expressions together into another expression. The rules for evaluating a macro expression are:

• Evaluate the operator to get a macro.
• Apply the macro to the unevaluated operands. This involves the following steps.

– Bind the unevaluated operands to the formal parameters in a new frame.
– Evaluate each expression in the body of the macro using normal Scheme evaluation rules.
– The value of the last expression is returned.

• Evaluate the expression produced by the macro in the frame it was called in.

Note the key differences here between macros and regular procedures: the operands are not evaluated before being
passed in to the macro. Additionally, the output of the body of the macro is evaluated after.

To evaluate (twice (print 'woof)):

• We evaluate twice, which evaluates to a macro procedure.
• We apply that macro procedure to the unevaluated operands:

– Bind (print 'woof) to expr in a new frame.
– Evaluate the body of the macro: (list 'begin expr expr) evaluates to (begin (print 'woof) (print

'woof)).
– Return (begin (print 'woof) (print 'woof))

• Evaluate (begin (print 'woof) (print 'woof)) in the current frame. (print 'woof) is evaluated twice,
and woof is printed twice.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.


